Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/16348
Title: Artificial intelligence system for continuous affect estimation from naturalistic human expressions
Authors: Abd Gaus, Yona Falinie
Advisors: Meng, H
Cosmas, J
Keywords: Affective computing;Deep learning;Machine learning;Modality;Fusion
Issue Date: 2018
Publisher: Brunel University London
Abstract: The analysis and automatic affect estimation system from human expression has been acknowledged as an active research topic in computer vision community. Most reported affect recognition systems, however, only consider subjects performing well-defined acted expression, in a very controlled condition, so they are not robust enough for real-life recognition tasks with subject variation, acoustic surrounding and illumination change. In this thesis, an artificial intelligence system is proposed to continuously (represented along a continuum e.g., from -1 to +1) estimate affect behaviour in terms of latent dimensions (e.g., arousal and valence) from naturalistic human expressions. To tackle the issues, feature representation and machine learning strategies are addressed. In feature representation, human expression is represented by modalities such as audio, video, physiological signal and text modality. Hand- crafted features is extracted from each modality per frame, in order to match with consecutive affect label. However, the features extracted maybe missing information due to several factors such as background noise or lighting condition. Haar Wavelet Transform is employed to determine if noise cancellation mechanism in feature space should be considered in the design of affect estimation system. Other than hand-crafted features, deep learning features are also analysed in terms of the layer-wise; convolutional and fully connected layer. Convolutional Neural Network such as AlexNet, VGGFace and ResNet has been selected as deep learning architecture to do feature extraction on top of facial expression images. Then, multimodal fusion scheme is applied by fusing deep learning feature and hand-crafted feature together to improve the performance. In machine learning strategies, two-stage regression approach is introduced. In the first stage, baseline regression methods such as Support Vector Regression are applied to estimate each affect per time. Then in the second stage, subsequent model such as Time Delay Neural Network, Long Short-Term Memory and Kalman Filter is proposed to model the temporal relationships between consecutive estimation of each affect. In doing so, the temporal information employed by a subsequent model is not biased by high variability present in consecutive frame and at the same time, it allows the network to exploit the slow changing dynamic between emotional dynamic more efficiently. Following of two-stage regression approach for unimodal affect analysis, fusion information from different modalities is elaborated. Continuous emotion recognition in-the-wild is leveraged by investigating mathematical modelling for each emotion dimension. Linear Regression, Exponent Weighted Decision Fusion and Multi-Gene Genetic Programming are implemented to quantify the relationship between each modality. In summary, the research work presented in this thesis reveals a fundamental approach to automatically estimate affect value continuously from naturalistic human expression. The proposed system, which consists of feature smoothing, deep learning feature, two-stage regression framework and fusion using mathematical equation between modalities is demonstrated. It offers strong basis towards the development artificial intelligent system on estimation continuous affect estimation, and more broadly towards building a real-time emotion recognition system for human-computer interaction.
Description: This thesis was submitted for the award of Doctor of Philosophy and was awarded by Brunel University London
URI: http://bura.brunel.ac.uk/handle/2438/16348
Appears in Collections:Electronic and Computer Engineering
Dept of Electronic and Computer Engineering Theses

Files in This Item:
File Description SizeFormat 
FulltextThesis.pdf3.26 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.