Please use this identifier to cite or link to this item:
Title: Moving Object Detection using Adaptive Blind Update and RGB-D Camera
Authors: Dorudian, N
Lauria, S
Swift, S
Keywords: GPS-denied environments;dynamic environments;object detection;nonparametric background subtraction;background-model update;segmentation
Issue Date: 6-Jun-2019
Publisher: IEEE
Citation: Dorudian, N., Lauria, S. and Swift, S. (2019) 'Moving Object Detection Using Adaptive Blind Update and RGB-D Camera,' IEEE Sensors Journal, 19(18), pp. 8191-8201. doi: 10.1109/JSEN.2019.2920515.
Abstract: A novel background subtraction approach using RGB-D camera and an adaptive blind updating policy is introduced. This method in initialization creates a model to store background pixels to compare each pixel of the new frame with the model in the same location to identify background pixels. The background-model update presented in this paper uses regular and blind update which also has a different criteria from existing methods. In particular, blind update frequently changes based on the background changes and the speed of moving object. This will allow the scene model to adapt to the changes in the background, detecting the stationary moving object and reducing the ghost phenomenon. In addition, proposed bootstrapping segmentation and shadow detection are added to the system to improve the accuracy of the algorithm in shadow and depth camouflage scenarios. The proposed method is compared with the original method and other state of the art algorithms. Experimental results show significant improvement in those videos that stationary object appear. In addition, the benchmark results also indicate strong and stable results compared to the other state of the art algorithms.
ISSN: 1530-437X
Appears in Collections:Dept of Computer Science Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdf2.43 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons