Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/19357
Title: Personas Design For Conversational Systems In Education
Authors: Amer Jid Almahri, F
Bell, D
Arzoky, M
Keywords: chatbots;clustering;conversational system;data analysis;data-driven personas development method;student engagement;personas design;personas;machine learning;K-means
Issue Date: 21-Oct-2019
Publisher: MDPI
Citation: Informatics, 2019, 6(4), 46 (26 pp.)
Abstract: © 2019 by the authors. This research aims to explore how to enhance student engagement in higher education institutions (HEIs) while using a novel conversational system (chatbots). The principal research methodology for this study is design science research (DSR), which is executed in three iterations: personas elicitation, a survey and development of student engagement factor models (SEFMs), and chatbot interaction analysis. This paper focuses on the first iteration, personas elicitation, which proposes a data-driven persona development method (DDPDM) that utilises machine learning, specifically the K-means clustering technique. Data analysis is conducted using two datasets. Three methods are used to find the K-values: the elbow, gap statistic, and silhouette methods. Subsequently, the silhouette coefficient is used to find the optimal value of K. Eight personas are produced from the two data analyses. The pragmatic findings from this study make two contributions to the current literature. Firstly, the proposed DDPDM uses machine learning, specifically K-means clustering, to build data-driven personas. Secondly, the persona template is designed for university students, which supports the construction of data-driven personas. Future work will cover the second and third iterations. It will cover building SEFMs, building tailored interaction models for these personas and then evaluating them using chatbot technology.
URI: https://bura.brunel.ac.uk/handle/2438/19357
DOI: https://doi.org/10.3390/informatics6040046
ISSN: 2227-9709
Appears in Collections:Dept of Computer Science Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdf6.02 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.