Please use this identifier to cite or link to this item:
Title: Explicit and implicit methods for second order ordinary differential equations
Authors: Twizell, E H
Issue Date: 1980
Publisher: Brunel University
Citation: Maths Technical Papers (Brunel University). Jan 1980, pp 1-30
Abstract: A family of explicit formulas is developed for solving a system of second order linear ordinary differential equations with constant coefficients and with initial conditions specified. A family of implicit formulas for solving the same system with specified boundary conditions is also developed. Both families are based on Padé approximants to the exponential function and for each formula developed the order of the formula is seen to be one higher than the order of the Padé approximant used. In the case of the family of implicit formulas it is seen that the order of the formula is made arbitrarily high by using an appropriate Padé approximant. It is shown that the families are readily applicable to the numerical solution of second order hyperbolic partial differential equations with constant coefficients. The formulas developed are tested on four problems.
Appears in Collections:Dept of Mathematics Research Papers
Mathematical Sciences

Files in This Item:
File Description SizeFormat 
TR_92.pdf306.69 kBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.