Please use this identifier to cite or link to this item:
Title: Detecting Java Software Similarities by using Different Clustering Techniques
Authors: Capiluppi, A
Di Ruscio, D
Di Rocco, J
Nguyen, PT
Ajienka, N
Keywords: FOSS (Free and open-source software);application domains;Latent Dirichlet Allocation;machine learning;expert opinions
Issue Date: Jun-2020
Publisher: Elsevier BV
Citation: Capiluppi, A., Di Ruscio, D., Di Rocco, J., Nguyen, P.T. and Ajienka, N. (2020) 'Detecting Java Software Similarities by using Different Clustering Techniques', Information and Software Technology, 122, 106279, pp. 1-18. doi:10.1016/j.infsof.2020.106279.
ISSN: 0950-5849
Appears in Collections:Dept of Computer Science Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdf674.63 kBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.