Please use this identifier to cite or link to this item:
http://bura.brunel.ac.uk/handle/2438/20379| Title: | Detecting Java Software Similarities by using Different Clustering Techniques |
| Authors: | Capiluppi, A Di Ruscio, D Di Rocco, J Nguyen, PT Ajienka, N |
| Keywords: | FOSS (Free and open-source software);application domains;Latent Dirichlet Allocation;machine learning;expert opinions |
| Issue Date: | Jun-2020 |
| Publisher: | Elsevier BV |
| Citation: | Capiluppi, A., Di Ruscio, D., Di Rocco, J., Nguyen, P.T. and Ajienka, N. (2020) 'Detecting Java Software Similarities by using Different Clustering Techniques', Information and Software Technology, 122, 106279, pp. 1-18. doi:10.1016/j.infsof.2020.106279. |
| URI: | https://bura.brunel.ac.uk/handle/2438/20379 |
| DOI: | https://doi.org/10.1016/j.infsof.2020.106279 |
| ISSN: | 0950-5849 |
| Appears in Collections: | Dept of Computer Science Research Papers |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| FullText.pdf | 674.63 kB | Adobe PDF | View/Open |
Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.