Please use this identifier to cite or link to this item:
Title: Opening the black box: Personalizing type 2 diabetes patients based on their latent phenotype and temporal associated complication rules
Authors: Yousefi, L
Swift, S
Arzoky, M
Saachi, L
Chiovato, L
Tucker, A
Keywords: Latent Variable Discovery;Patient Personalisation;Temporal Phenotype;Time Series Clustering;Diabetes Associated Complication Rules
Issue Date: 29-Mar-2020
Publisher: Wiley
Citation: Computational Intelligence
Abstract: It is widely considered that approximately 10% of the population suffers from type 2 diabetes. Unfortunately, the impact of this disease is underestimated. Patient's mortality often occurs due to complications caused by the disease and not the disease itself. Many techniques utilized in modeling diseases are often in the form of a “black box” where the internal workings and complexities are extremely difficult to understand, both from practitioners' and patients' perspective. In this work, we address this issue and present an informative model/pattern, known as a “latent phenotype,” with an aim to capture the complexities of the associated complications' over time. We further extend this idea by using a combination of temporal association rule mining and unsupervised learning in order to find explainable subgroups of patients with more personalized prediction. Our extensive findings show how uncovering the latent phenotype aids in distinguishing the disparities among subgroups of patients based on their complications patterns. We gain insight into how best to enhance the prediction performance and reduce bias in the models applied using uncertainty in the patients' data.
ISSN: 0824-7935
Appears in Collections:Dept of Computer Science Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdf5.71 MBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.