Please use this identifier to cite or link to this item:
Title: Optimization of TIG welding parameters using a hybrid nelder mead-evolutionary algorithms method
Authors: Kshirsagar, R
Jones, S
Lawrence, J
Tabor, J
Keywords: genetic algorithm;simulated annealing;particle swarm optimization;Nelder-Mead optimization;TIG welding;bead geometry optimization
Issue Date: 10-Feb-2020
Publisher: MDPI
Citation: Journal of Manufacturing and Materials Processing, 2020, 4 (1) 10 (22 pp.)
Abstract: © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( A number of evolutionary algorithms such as genetic algorithms, simulated annealing, particle swarm optimization, etc., have been used by researchers in order to optimize different manufacturing processes. In many cases these algorithms are either incapable of reaching global minimum or the time and computational effort (function evaluations) required makes the application of these algorithms impractical. However, if the Nelder Mead optimization method is applied to approximate solutions cheaply obtained from these algorithms, the solution can be further refined to obtain near global minimum of a given error function within only a few additional function evaluations. The initial solutions (vertices) required for the application of Nelder-Mead optimization can be obtained through multiple evolutionary algorithms. The results obtained using this hybrid method are better than that obtained from individual algorithms and also show a significant reduction in the computation effort.
ISSN: 2504-4494
Appears in Collections:Publications

Files in This Item:
File Description SizeFormat 
FullText.pdf1.34 MBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.