Please use this identifier to cite or link to this item:
Title: Using topological data analysis and pseudo time series to infer temporal phenotypes from electronic health records
Authors: Dagliati, A
Geifman, N
Peek, N
Holmes, JH
Sacchi, L
Bellazzi, R
Sajjadi, SE
Tucker, A
Keywords: Type 2 diabetes;Unsupervised machine learning;Longitudinal studies;Electronic phenotyping
Issue Date: 15-Jul-2020
Publisher: Elsevier
Citation: Dagliati A, Geifman N, Peek N, Holmes JH, Sacchi L, Bellazzi R, Sajjadi SE, Tucker A. Using Topological Data Analysis and Pseudo Time Series to Infer Temporal Phenotypes from Electronic Health Records. Artificial Intelligence in Medicine. 2020 Jul 15:101930.
Abstract: Temporal phenotyping enables clinicians to better understand observable characteristics of a disease as it progresses. Modelling disease progression that captures interactions between phenotypes is inherently challenging. Temporal models that capture change in disease over time can identify the key features that characterize disease subtypes that underpin these trajectories. These models will enable clinicians to identify early warning signs of progression in specific sub-types and therefore to make informed decisions tailored to individual patients. In this paper, we explore two approaches to building temporal phenotypes based on the topology of data: topological data analysis and pseudo time-series. Using type 2 diabetes data, we show that the topological data analysis approach is able to identify disease trajectories and that pseudo time-series can infer a state space model characterized by transitions between hidden states that represent distinct temporal phenotypes. Both approaches highlight lipid profiles as key factors in distinguishing the phenotypes.
ISSN: 0933-3657
Other Identifiers: 101930
Appears in Collections:Dept of Computer Science Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdf4.88 MBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.