Please use this identifier to cite or link to this item:
Title: Power system state estimation using conditional generative adversarial network
Authors: He, Y
Chai, S
Xu, Z
Lai, CS
Xu, X
Keywords: power system state estimation;generative adversarial network;system state
Issue Date: Oct-2020
Publisher: Institution of Engineering and Technology (IET)
Citation: IET Generation, Transmission & Distribution, 2020
Abstract: Accurate power system state estimation (SE) is essential for power system control, optimisation, and security analyses. In this work, a model-free and fully data-driven approach was proposed for power system static SE based on a conditional generative adversarial network (GAN). Comparing with the conventional SE approach, i.e. weighted least square (WLS) based methods, any appropriate knowledge of the system model is not required in the proposed method. Without knowing the specific model, GAN can learn the inherent physics of underlying state variables purely relying on historic samples. Once the model has been trained, it can estimate the corresponding system state accurately given the system raw measurements, which are sometimes characterised by incompletions and corruptions in addition to noises. Case studies on the IEEE 118-bus system and a 2746-bus Polish system validate the effectiveness of the proposed approach, and the mean absolute error is <1.2 × 10−3 and 5.3 × 10−3 rad for voltage magnitude and phase angle, respectively, which indicates a high potential for practical applications.
ISSN: 1751-8687
Appears in Collections:Dept of Electronic and Computer Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdf5.73 MBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.