Please use this identifier to cite or link to this item:
http://bura.brunel.ac.uk/handle/2438/24394| Title: | Deterministic policy optimization with clipped value expansion and long-horizon planning |
| Authors: | Gao, S Shi, H Wang, F Wang, Z Zhang, S Li, Y Sun, Y |
| Keywords: | model-based reinforcement learning;policy gradient;sample efficiency;planning;imitation learning |
| Issue Date: | 16-Feb-2022 |
| Publisher: | Elsevier |
| Citation: | Gao, S. et al. (2022) ‘Deterministic policy optimization with clipped value expansion and long-horizon planning’, Neurocomputing, 483, pp. 299 - 310. doi:10.1016/j.neucom.2022.02.022. |
| URI: | https://bura.brunel.ac.uk/handle/2438/24394 |
| DOI: | https://doi.org/10.1016/j.neucom.2022.02.022 |
| ISSN: | 0925-2312 |
| Appears in Collections: | Dept of Computer Science Embargoed Research Papers |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| FullText.pdf | Embargoed until 16 Feb 2024 | 2.84 MB | Adobe PDF | View/Open |
Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.