Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/26610
Title: Deep Transfer Learning for Bearing Fault Diagnosis: A Systematic Review Since 2016
Authors: Chen, X
Yang, R
Xue, Y
Huang, M
Ferrero, R
Wang, Z
Keywords: bearing fault;deep transfer learning;fault diagnosis
Issue Date: 13-Feb-2023
Citation: Chen, X. et al. (2023) 'Deep Transfer Learning for Bearing Fault Diagnosis: A Systematic Review Since 2016', IEEE Transactions on Instrumentation and Measurement, 72, pp. 1 - 21. doi: /10.1109/TIM.2023.3244237.
URI: https://bura.brunel.ac.uk/handle/2438/26610
DOI: https://doi.org/10.1109/TIM.2023.3244237
ISSN: 0018-9456
Other Identifiers: ORCID iDs: Xiaohan Chen https://orcid.org/0000-0001-6462-4216; Rui Yang https://orcid.org/0000-0002-5634-5476; Yihao Xue https://orcid.org/0000-0002-3310-4864; Mengjie Huang https://orcid.org/0000-0001-8163-8679; Roberto Ferrero https://orcid.org/0000-0001-7820-9021; Zidong Wang https://orcid.org/0000-0002-9576-7401.
3508221
Appears in Collections:Dept of Computer Science Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2023 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works by sending a request to pubs-permissions@ieee.org. For more information, see https://www.ieee.org/publications/rights/rights-policies.html1.63 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.