Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/29018
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFernando, K-
dc.contributor.authorSchindler, TI-
dc.date.accessioned2024-05-16T07:57:01Z-
dc.date.available2024-05-16T07:57:01Z-
dc.date.issued2023-02-27-
dc.identifierORCiD: Kasun Fernando https://orcid.org/0000-0003-1489-9566-
dc.identifierarXiv:2302.13807v1 [math.DS]-
dc.identifier.citationFernando, K. and Schindler, T.I. (2023) 'Limit Theorems for a class of unbounded observables with an application to "Sampling the Lindelöf hypothesis"', arXiv:2302.13807v1, pp. 1 - 48. doi: 10.48550/arXiv.2302.13807.en_US
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/29018-
dc.descriptionThe article archived on this institutional repository is a preprint available online at arXiv:2302.13807v1 [math.DS], https://doi.org/10.48550/arXiv.2302.13807 . It has not been certified by peer review.en_US
dc.descriptionMSC classes: 37A50, 60F05, 37A44, 11M06en_US
dc.description.abstractWe prove the Central Limit Theorem (CLT), the first order Edgeworth Expansion and a Mixing Local Central Limit Theorem (MLCLT) for Birkhoff sums of a class of unbounded heavily oscillating observables over a family of full-branch piecewise $C^2$ expanding maps of the interval. As a corollary, we obtain the corresponding results for Boolean-type transformations on $\mathbb{R}$. The class of observables in the CLT and the MLCLT on $\mathbb{R}$ include the real part, the imaginary part and the absolute value of the Riemann zeta function. Thus obtained CLT and MLCLT for the Riemann zeta function are in the spirit of the results of Lifschitz & Weber (2009) and Steuding (2012) who have proven the Strong Law of Large Numbers for "Sampling the Lindel\"of hypothesis".en_US
dc.format.extent1 - 48-
dc.format.extent1 - 48-
dc.format.mediumElectronic-
dc.format.mediumElectronic-
dc.language.isoen_USen_US
dc.publisherCornell Universityen_US
dc.relation.urihttps://arxiv.org/abs/2302.13807v1-
dc.rightsCopyright © 2023 The Author(s). This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-nc-sa/4.0/).-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/-
dc.subjectdynamical systems (math.DS)en_US
dc.subjectnumber theory (math.NT)en_US
dc.subjectcentral limit theorem-
dc.subjectmixing local limit theorem-
dc.subjectEdgeworth expansion-
dc.subjectergodic limit theorems-
dc.subjectunbounded observable expanding interval maps-
dc.subjectRiemann zeta functions-
dc.subjectLindel¨of hypothesis-
dc.subjectquasicompact transfer operators-
dc.subjectKeller-Liverani perturbation theory-
dc.titleLimit Theorems for a class of unbounded observables with an application to "Sampling the Lindelöf hypothesis"en_US
dc.typeArticleen_US
dc.date.dateAccepted2023-02-27-
dc.identifier.doihttps://doi.org/10.48550/arXiv.2302.13807-
pubs.notes48 pages-
dc.identifier.eissn2331-8422-
dc.rights.licensehttps://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.en-
dc.rights.holderThe Author(s)-
Appears in Collections:Dept of Mathematics Research Papers

Files in This Item:
File Description SizeFormat 
Preprint.pdfCopyright © 2023 The Author(s). This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-nc-sa/4.0/).553.57 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons