Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/29317
Title: Comparison of CFD predictions of supercritical carbon dioxide axial flow turbines using a number of turbulence models
Authors: AbdElDayem, AER
White, MT
Sayma, AI
Keywords: axial turbines;loss estimation;turbulence modelling;supercritical CO2
Issue Date: 16-Sep-2021
Publisher: The American Society of Mechanical Engineers
Citation: AbdElDayem, A., White, M.T. and Sayma, A.I. (2021) 'Comparison of CFD predictions of supercritical carbon dioxide axial flow turbines using a number of turbulence models', Proceedings of the ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. Volume 10: Supercritical CO2. Virtual, Online. 7–11 June, V010T30A010, pp. 1 - 15. doi: 10.1115/GT2021-58883.
Abstract: A detailed loss assessment of an axial turbine stage operating with a supercritical carbon dioxide (sCO2) based mixture, namely titanium tetrachloride (CO2-TiCl4 85-15%), is presented. To assess aerodynamic losses, computational fluid dynamics (CFD) simulations are conducted using a geometry generated using mean-line design equations which is part of the work delivered to the SCARABEUS project [1]. The CFD simulations are 3D steady state and employ a number of turbulence models to investigate various aerodynamic loss mechanisms. Two categories of turbulence models are used: Eddy Viscosity and Reynold’s Stress models (RSM). The Eddy Viscosity models are the k-ε, k-ε RNG, k-ω, k-ω SST and k-ω Generalized while the RSM models are BSL, LRR, w-RSM and k-ε EARSM. The comparison between different turbulence models showed minor deviations in mass-flow rate, power output and blade loading while significant deviations appear in the loss coefficients and the degree of reaction. It is noted that the k-ε model gives the highest loss coefficients and the lowest isentropic efficiencies while most of the RSM models indicate higher efficiencies and lower loss coefficients. At off-design conditions a sensitivity study revealed that the k-ε RNG model records the sharpest drop in the isentropic efficiency of 8.24% at low mass flowrate reaching 30% off-design. The efficiency sensitivity is found to be less for the other tested models getting 3.1% drop in efficiency for the LRR RSM model.
Description: Paper No: GT2021-58883, V010T30A010.
URI: https://bura.brunel.ac.uk/handle/2438/29317
DOI: https://doi.org/10.1115/GT2021-58883
ISBN: 978-0-7918-8504-8
Other Identifiers: ORCiD: Abdulnaser Sayma https://orcid.org/0000-0003-2315-0004
GT2021-58883
V010T30A010
Appears in Collections:Dept of Mechanical and Aerospace Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2021 by ASME / The Authors; reuse license CC-BY (https://creativecommons.org/licenses/by/4.0/).1.66 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons