Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/29789
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPapananias, M-
dc.contributor.authorObajemu, O-
dc.contributor.authorMcLeay, TE-
dc.contributor.authorMahfouf, M-
dc.contributor.authorKadirkamanathan, V-
dc.coverage.spatialChicago, USA / virtual-
dc.date.accessioned2024-09-21T11:03:32Z-
dc.date.available2024-09-21T11:03:32Z-
dc.date.issued2020-09-22-
dc.identifierORCiD: Moschos Papananias https://orcid.org/0000-0001-7121-9681-
dc.identifier.citationPapananias, M. et al. (2020) 'Development of a new machine learning-based informatics system for product health monitoring', Procedia CIRP, 93, pp. 473 - 478. doi: 10.1016/j.procir.2020.03.075.en_US
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/29789-
dc.description.abstractManufacturing informatics aims to optimize productivity by extracting information from numerous data sources and making decisions based on that information about the process and the parts being produced. Manufacturing processes usually include a series of costly operations such as heat treatment, machining, and inspection to produce high-quality parts. However, performing costly operations when the product conformance to specifications cannot be achievable is not desirable. This paper develops a new machine learning-based informatics system capable of predicting the end product quality so that non-value-adding operations such as inspection can be minimized and the process can be stopped before completion when the part being manufactured fails to meet the design specifications.en_US
dc.description.sponsorshipUK Engineering and Physical Sciences Research Council (EPSRC) under Grant Reference EP/P006930/1.en_US
dc.format.extent473 - 478-
dc.format.mediumElectronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.rightsCopyright © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/).-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.source53rd CIRP Conference on Manufacturing Systems 2020-
dc.source53rd CIRP Conference on Manufacturing Systems 2020-
dc.subjectmanufacturing informaticsen_US
dc.subjectmultistage manufacturing processen_US
dc.subjectprincipal componet analysisen_US
dc.subjectartificial neural networksen_US
dc.subjectmultiple linear regressionen_US
dc.titleDevelopment of a new machine learning-based informatics system for product health monitoringen_US
dc.typeConference Paperen_US
dc.identifier.doihttps://doi.org/10.1016/j.procir.2020.03.075-
dc.relation.isPartOfProcedia CIRP-
pubs.finish-date2020-07-03-
pubs.finish-date2020-07-03-
pubs.publication-statusPublished-
pubs.start-date2020-07-01-
pubs.start-date2020-07-01-
pubs.volume93-
dc.identifier.eissn2212-8271-
dc.rights.licensehttps://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.en-
dc.rights.holderThe Authors-
Appears in Collections:Dept of Mechanical and Aerospace Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/).1.05 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons