Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/29791
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPapananias, M-
dc.contributor.authorMcLeay, TE-
dc.contributor.authorMahfouf, M-
dc.contributor.authorKadirkamanathan, V-
dc.coverage.spatialSheffield, UK-
dc.date.accessioned2024-09-21T12:56:43Z-
dc.date.available2024-09-21T12:56:43Z-
dc.date.issued2019-07-05-
dc.identifierORCiD: Moschos Papananias https://orcid.org/0000-0001-7121-9681-
dc.identifier.citationPapananias, M. et al. (2019) 'An intelligent metrology informatics system based on neural networks for multistage manufacturing processes', Procedia CIRP, 82, pp. 444 - 449. doi: 10.1016/j.procir.2019.04.148.en_US
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/29791-
dc.description.abstractThe ability to gather manufacturing data from various workstations has been explored for several decades and the advances in sensory and data acquisition techniques have led to the increasing availability of high-dimensional data. This paper presents an intelligent metrology informatics system to extract useful information from Multistage Manufacturing Process (MMP) data and predict part quality characteristics such as true position and circularity using neural networks. The input data include the tempering temperature, material conditions, force and vibration while the output data include comparative coordinate measurements. The effectiveness of the proposed method is demonstrated using experimental data from a MMP.en_US
dc.description.sponsorshipUK Engineering and Physical Sciences Research Council (EPSRC) under Grant Reference: EP/P006930/1.en_US
dc.format.extent444 - 449-
dc.format.mediumElectronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.rightsCopyright © 2019 The Author(s). Published by Elsevier B.V. This is an open access article under a Creative Commons license (https://creativecommons.org/licenses/by-nc-nd/4.0/).-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.source17th CIRP Conference on Modelling of Machining Operations (17th CIRP CMMO)-
dc.source17th CIRP Conference on Modelling of Machining Operations (17th CIRP CMMO)-
dc.subjectmultistage manufacturingen_US
dc.subjectintelligent/smart manufacturingen_US
dc.subjectmanufacturing informaticsen_US
dc.subjectartificial neural networksen_US
dc.titleAn intelligent metrology informatics system based on neural networks for multistage manufacturing processesen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.1016/j.procir.2019.04.148-
dc.relation.isPartOfProcedia CIRP-
pubs.finish-date2019-06-14-
pubs.finish-date2019-06-14-
pubs.publication-statusPublished-
pubs.start-date2019-06-13-
pubs.start-date2019-06-13-
pubs.volume82-
dc.identifier.eissn2212-8271-
dc.rights.licensehttps://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.en-
dc.rights.holderThe Author(s)-
Appears in Collections:Dept of Mechanical and Aerospace Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2019 The Author(s). Published by Elsevier B.V. This is an open access article under a Creative Commons license (https://creativecommons.org/licenses/by-nc-nd/4.0/).1.24 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons