Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/29871
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMarkatos, NG-
dc.contributor.authorMousavi, A-
dc.contributor.authorKatsou, E-
dc.contributor.authorPippione, G-
dc.contributor.authorPaoletti, R-
dc.date.accessioned2024-10-03T16:22:18Z-
dc.date.available2024-10-03T16:22:18Z-
dc.date.issued2024-06-21-
dc.identifierORCiD: Nikolaos K. Markatos https://orcid.org/0000-0003-3953-6796-
dc.identifierORCiD: Alireza Mousavi https://orcid.org/0000-0003-0360-2712-
dc.identifierORCiD: Evina Katsou https://orcid.org/0000-0002-2638-7579-
dc.identifier.citationMarkatos, N.K. et al. (2024) 'Feature Selection to address High-Dimensionality in Industry 4.0 Multi-emitter Laser Modules Assembly Lines', IEEE Intelligent Systems, 0 (early access), pp. 1 - 12. doi: 10.1109/MIS.2024.3416678.en_US
dc.identifier.issn1541-1672-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/29871-
dc.description.abstractIndustry 4.0 has increased data depth and breadth in high-tech manufacturing, but high-dimensionality and sparsity persist. High-dimensional space's sparsity makes classical learning and knowledge extraction algorithms ineffective and error-prone. Dimension reduction methods like feature selection seem to address this problem. This study addresses these challenges by conducting a comparative analysis on a real laser assembly industrial case of high dimensions. We explore five standalone methods—NCFS, RReliefF, MRMR, RFE, and Lasso—applied to datasets from two laser modules (d-serie and s-serie). Additionally, two hybrid methods—RReliefF-RFE and MRMR-RFE—are evaluated, broadening the scope of feature selection strategies. Time efficiency prioritizes RReliefF, NCFS and Lasso, while RReliefF-RFE, NCFS and Lasso excel in interpretability, achieving significant predictor reduction without compromising accuracy. The study thus provides insights into the selection of FS methods in a challenging industrial laser assembly setting.en_US
dc.description.sponsorshipThis work has been carried out in the framework of the IQONIC project, which received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 820677.en_US
dc.format.extent1 - 12-
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.rightsAttribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectfeature extractionen_US
dc.subjectredundancyen_US
dc.subjectassemblyen_US
dc.subjectaccuracyen_US
dc.subjectvectorsen_US
dc.subjectpredictive modelsen_US
dc.subjectlaser modesen_US
dc.titleFeature Selection to address High-Dimensionality in Industry 4.0 Multi-emitter Laser Modules Assembly Linesen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.1109/MIS.2024.3416678-
dc.relation.isPartOfIEEE Intelligent Systems-
pubs.issueearly access-
pubs.publication-statusPublished-
pubs.volume0-
dc.identifier.eissn1941-1294-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dc.rights.holderThe Author(s)-
Appears in Collections:Dept of Mechanical and Aerospace Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/882 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons