Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/29964
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCiciretti, V-
dc.contributor.authorPallotta, A-
dc.contributor.authorLodh, S-
dc.contributor.authorSenyo, PK-
dc.contributor.authorNandy, M-
dc.date.accessioned2024-10-18T07:20:16Z-
dc.date.available2024-10-18T07:20:16Z-
dc.date.issued2024-11-18-
dc.identifierORCiD: Suman Lodh https://orcid.org/0000-0002-4513-1480-
dc.identifierORCiD: P. K. Senyo https://orcid.org/0000-0001-7126-3826-
dc.identifierORCiD: Monomita Nandy https://orcid.org/0000-0001-8191-2412-
dc.identifier.citationCiciretti, V. et al (2024) 'Forecasting Digital Asset return: an Application of Machine Learning Model', International Journal of Finance and Economics, 0 (ahead of print), pp. 1 - 18. doi: 10.1002/ijfe.3062.en_US
dc.identifier.issn1076-9307-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/29964-
dc.descriptionData Availability Statement: Data sharing is not applicable to this article as no new data were created or analyzed in this study.en_US
dc.description.abstractIn this study, we aim to identify the machine learning model that can overcome the limitations of traditional statistical modelling techniques in forecasting Bitcoin prices. Also, we outline the necessary conditions that make the model suitable. We draw on a multivariate large data set of Bitcoin prices and its market microstructure variables and apply three machine learning models, namely double deep Q-learning, XGBoost and ARFIMA-GARCH. The findings show that the double deep Q-learning model outperforms the others in terms of returns and Sortino ratio and is capable of one-step-ahead sign forecast of the returns even on synthetic data. These critical insights in forecasting literature will support practitioners and regulators to identify an economically viable cryptocurrency forecasting return model.en_US
dc.format.extent1 - 18-
dc.format.mediumPrint-Electronic-
dc.language.isoen_USen_US
dc.publisherWileyen_US
dc.rightsAttribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectdigital asseten_US
dc.subjectforecasting priceen_US
dc.subjectbitcoinen_US
dc.subjecttime-seriesen_US
dc.subjectmachine learningen_US
dc.subjectreinforcement learningen_US
dc.subjectdouble deep Q-learningen_US
dc.titleForecasting Digital Asset return: an Application of Machine Learning Modelen_US
dc.typeArticleen_US
dc.date.dateAccepted2024-10-12-
dc.identifier.doihttps://doi.org/10.1002/ijfe.3062-
dc.relation.isPartOfInternational Journal of Finance and Economics-
pubs.issue00-
pubs.publication-statusPublished online-
pubs.volume0-
dc.identifier.eissn1099-1158-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dc.rights.holderThe Author(s)-
Appears in Collections:Brunel Business School Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2024 The Author(s). International Journal of Finance & Economics published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.10.62 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons