Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/30969
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSong, B-
dc.contributor.authorChen, J-
dc.contributor.authorLiu, W-
dc.contributor.authorFang, J-
dc.contributor.authorXue, Y-
dc.contributor.authorLiu, X-
dc.date.accessioned2025-03-26T16:11:09Z-
dc.date.available2025-03-26T16:11:09Z-
dc.date.issued2025-03-19-
dc.identifierORCiD: Weibo Liu https://orcid.org/0000-0002-8169-3261-
dc.identifierORCiD: Yani Xue https://orcid.org/0000-0002-7526-9085-
dc.identifierORCiD: Xiaohui Liu https://orcid.org/0000-0003-1589-1267-
dc.identifierArticle no. 129904-
dc.identifier.citationSong, B. et al. (2025) 'YOLO-ELWNet: A lightweight object detection network', Neurocomputing, 636. 129904, pp. 1 - 9. doi: 10.1016/j.neucom.2025.129904.en_US
dc.identifier.issn0925-2312-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/30969-
dc.descriptionData availability: Data will be made available on request.en_US
dc.description.abstractThis paper proposes a YOLO-based efficient lightweight network (YOLO-ELWNet) for onboard object detection based on the YOLOv3. A channel split and shuffle with coordinate attention module is developed in the backbone block, which effectively reduces the size of model parameters and computational cost while maintaining the detection accuracy. A new feature fusion network is proposed in the neck block, where a cross-stage partial with efficient bottleneck module is put forward to improve the feature extraction ability and reduce the computational cost. The Scylla intersection over union-based loss function is utilized in the head block, which accelerates the convergence speed of the YOLO-ELWNet. The effectiveness of the proposed YOLO-ELWNet is validated on the open source KITTI vision benchmark. The performance of YOLO-ELWNet is superior to some mainstream lightweight object detection models in terms of detection accuracy and computational cost, which demonstrates its applicability for resource-constrained onboard object detection.en_US
dc.format.extent1 - 10-
dc.languageen-
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.rightsAttribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectobject detectionen_US
dc.subjectYOLOen_US
dc.subjectlightweight networken_US
dc.subjectonboard deviceen_US
dc.titleYOLO-ELWNet: A lightweight object detection networken_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.1016/j.neucom.2025.129904-
dc.relation.isPartOfNeurocomputing-
pubs.publication-statusPublished-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/ legalcode.en-
dcterms.dateAccepted2025-03-01-
dc.rights.holderThe Authors-
Appears in Collections:Dept of Computer Science Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( https://creativecommons.org/licenses/by/4.0/ ).3.37 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons