Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/31232
Full metadata record
DC FieldValueLanguage
dc.contributor.authorManogaran, N-
dc.contributor.authorRaphael, MTM-
dc.contributor.authorRaja, R-
dc.contributor.authorJayakumar, AK-
dc.contributor.authorNandagopal, M-
dc.contributor.authorBalusamy, B-
dc.contributor.authorGhinea, G-
dc.date.accessioned2025-05-14T08:06:22Z-
dc.date.available2025-05-14T08:06:22Z-
dc.date.issued2025-05-13-
dc.identifierORCiD: Nalini Manogaran https://orcid.org/0000-0001-8987-3120-
dc.identifierORCiD: Mercy Theresa Michael Raphael https://orcid.org/0000-0002-3245-1215-
dc.identifierORCiD: Rajalakshmi Raja https://orcid.org/0000-0002-5373-8602-
dc.identifierORCiD; Aarav Kannan Jayakumar https://orcid.org/0009-0002-6470-7673-
dc.identifierORCiD: Malarvizhi Nandagopal https://orcid.org/0000-0001-7916-6668-
dc.identifierORCiD: Balamurugan Balusamy https://orcid.org/0000-0003-2805-4951-
dc.identifierORCiD: George Ghinea https://orcid.org/0000-0003-2578-5580-
dc.identifierArticle number: 3084-
dc.identifier.citationManogaran, N. et al. (2025) 'Developing a Novel Adaptive Double Deep Q-Learning-Based Routing Strategy for IoT-Based Wireless Sensor Network with Federated Learning', Sensors, 25 (10), 3084, pp. 1 - 27. doi: 10.3390/s25103084.en_US
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/31232-
dc.descriptionData Availability Statement: Data are contained within the article.en_US
dc.description.abstractThe working of the Internet of Things (IoT) ecosystem indeed depends extensively on the mechanisms of real-time data collection, sharing, and automatic operation. Among these fundamentals, wireless sensor networks (WSNs) are important for maintaining a countenance with their many distributed Sensor Nodes (SNs), which can sense and transmit environmental data wirelessly. Because WSNs possess advantages for remote data collection, they are severely hampered by constraints imposed by the limited energy capacity of SNs; hence, energy-efficient routing is a pertinent challenge. Therefore, in the case of clustering and routing mechanisms, these two play important roles where clustering is performed to reduce energy consumption and prolong the lifetime of the network, while routing refers to the actual paths for transmission of data. Addressing the limitations witnessed in the conventional IoT-based routing of data, this proposal presents an FL-oriented framework that presents a new energy-efficient routing scheme. Such routing is facilitated by the ADDQL model, which creates smart high-speed routing across changing scenarios in WSNs. The proposed ADDQL-IRHO model has been compared to other existing state-of-the-art algorithms according to multiple performance metrics such as energy consumption, communication delay, temporal complexity, data sum rate, message overhead, and scalability, with extensive experimental evaluation reporting superior performance. This also substantiates the applicability and competitiveness of the framework in variable-serviced IoT-oriented WSNs for next-gen intelligent routing solutions.en_US
dc.description.sponsorshipThis research received no external funding.en_US
dc.format.extent1 - 27-
dc.format.mediumElectronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherMDPIen_US
dc.rightsAttribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectInternet of Things (IoT)en_US
dc.subjectwireless sensor network (WSN)en_US
dc.subjectsmart data routingen_US
dc.subjectfederated learningen_US
dc.subjectdeep earningen_US
dc.titleDeveloping a Novel Adaptive Double Deep Q-Learning-Based Routing Strategy for IoT-Based Wireless Sensor Network with Federated Learningen_US
dc.typeArticleen_US
dc.date.dateAccepted2025-05-09-
dc.identifier.doihttps://doi.org/10.3390/s25103084-
dc.relation.isPartOfSensors-
pubs.issue10-
pubs.publication-statusPublished online-
pubs.volume25-
dc.identifier.eissn1424-8220-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dcterms.dateAccepted2025-03-09-
dc.rights.holderThe authors-
Appears in Collections:Dept of Computer Science Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).8.16 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons