Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/31402
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSun, N-
dc.contributor.authorWang, C-
dc.contributor.authorEdwards, W-
dc.contributor.authorWang, Y-
dc.contributor.authorLu, XL-
dc.contributor.authorGu, C-
dc.contributor.authorMcLennan, S-
dc.contributor.authorShangaris, P-
dc.contributor.authorQi, P-
dc.contributor.authorMastronicola, D-
dc.contributor.authorScottà, C-
dc.contributor.authorLombardi, G-
dc.contributor.authorChiappini, C-
dc.date.accessioned2025-06-06T15:20:42Z-
dc.date.available2025-06-06T15:20:42Z-
dc.date.issued2025-04-15-
dc.identifierORCiD: Ningjia Sun https://orcid.org/0000-0001-8803-6339-
dc.identifierORCiD: Cristiano Scottà https://orcid.org/0000-0003-3942-5201-
dc.identifierORCiD: Ciro Chiappini https://orcid.org/0000-0002-9893-4359-
dc.identifierArticle number: 2416066-
dc.identifier.citationSun, N. et al. (2025) 'Nanoneedle-Based Electroporation for Efficient Manufacturing of Human Primary Chimeric Antigen Receptor Regulatory T-Cells', Advanced Science, 12 (21), 2416066, pp. 1 - 13. doi: 10.1002/advs.202416066.en_US
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/31402-
dc.descriptionData Availability Statement: The data that support the findings of this study are available from the corresponding author upon reasonable request.en_US
dc.description.abstractRegulatory T cells (Tregs) play a crucial role in moderating immune responses offering promising therapeutic options for autoimmune diseases and allograft rejection. Genetically engineering Tregs with chimeric antigen receptors (CARs) enhances their targeting specificity and efficacy. With non-viral transfection methods suffering from low efficiency and reduced cell viability, viral transduction is currently the only viable approach for GMP-compliant CAR-Treg production. However, viral transduction raises concerns over immunogenicity, insertional mutagenesis risk, and high costs, which limit clinical scalability. This study introduces a scalable nanoneedle electroporation (nN-EP) platform for GMP-compatible transfection of HLA-A2-specific CAR plasmids into primary human Tregs. The nN-EP system achieves 43% transfection efficiency, outperforming viral transduction at multiplicity of infection 1 by twofold. Importantly, nN-EP preserves Treg viability, phenotype and proliferative capacity. HLA-A2-specific CAR-Tregs generated using nN-EP show specific activation and superior suppressive function compared to polyclonal or virally transduced Tregs in the presence of HLA-A2 expressing antigen presenting cells. These findings underscore the potential of nN-EP as a GMP-suitable method for CAR-Treg production, enabling broader clinical application in immune therapies.en_US
dc.description.sponsorshipC.C. acknowledges funding from the European Union under the ERC Starting Grant ENBION 759577 and the medical research council under the Confidence in Concept award (MC_PC_18052); King's-China Scholarship Council (202106230065).en_US
dc.format.extent1 - 13-
dc.format.mediumElectronic-
dc.languageEngish-
dc.language.isoen_USen_US
dc.publisherWiley-VCHen_US
dc.rightsCreative Commons Attribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectelectroporationen_US
dc.subjectCAR-Ten_US
dc.subjectnanoneedleen_US
dc.subjectnanoscale electroporationen_US
dc.subjectnon-viral transfectionen_US
dc.subjectregulatory T cellsen_US
dc.subjecttregsen_US
dc.titleNanoneedle-Based Electroporation for Efficient Manufacturing of Human Primary Chimeric Antigen Receptor Regulatory T-Cellsen_US
dc.typeArticleen_US
dc.date.dateAccepted2025-04-15-
dc.identifier.doihttps://doi.org/10.1002/advs.202416066-
dc.relation.isPartOfAdvanced Science-
pubs.issue21-
pubs.publication-statusPublished-
pubs.volume12-
dc.identifier.eissn2198-3844-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dcterms.dateAccepted2025-04-15-
dc.rights.holderThe Author(s)-
Appears in Collections:Dept of Life Sciences Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.8.19 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons