Please use this identifier to cite or link to this item:
http://bura.brunel.ac.uk/handle/2438/31420
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mikhailov, SE | - |
dc.date.accessioned | 2025-06-09T06:39:28Z | - |
dc.date.available | 2025-06-04 | - |
dc.date.available | 2025-06-09T06:39:28Z | - |
dc.date.issued | 2025-06-04 | - |
dc.identifier | ORCiD: Sergey E. Mikhailov https://orcid.org/0000-0002-3268-9290 | - |
dc.identifier.citation | Mikhailov, S.E. (2025) 'Spatially Periodic Solutions for Evolution Anisotropic Variable‐Coefficient Navier–Stokes Equations: II. Serrin‐Type Solutions', Mathematical Methods in the Applied Sciences, 2025, 0 (ahead of print), pp. 1 - 28. doi: 10.1002/mma.10921. | en_US |
dc.identifier.issn | 0170-4214 | - |
dc.identifier.uri | https://bura.brunel.ac.uk/handle/2438/31420 | - |
dc.description | Data Availability Statement: This paper has no associated data. | en_US |
dc.description.abstract | We consider evolution (non-stationary) space-periodic solutions to the n-dimensional non-linear Navier-Stokes equations of anisotropic fluids with the viscosity coefficient tensor variable in space and time and satisfying the relaxed ellipticity condition. Employing the Galerkin algorithm, we prove the existence of Serrin-type solutions, that is, weak solutions with the velocity in the periodic space L2(0,T;H˙n/2#σ), n≥2. The solution uniqueness and regularity results are also discussed. | en_US |
dc.description.sponsorship | UK Research and Innovation (UKRI) | en_US |
dc.format.extent | 1 - 28 | - |
dc.format.medium | Print-Electronic | - |
dc.language | English | - |
dc.language.iso | en_US | en_US |
dc.publisher | Wiley | en_US |
dc.rights | Creative Commons Attribution 4.0 International | - |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | anisotropic Navier-Stokes equations | en_US |
dc.subject | evolution Navier–Stokes equations | en_US |
dc.subject | partial differential equations | en_US |
dc.subject | relaxed ellipticity condition | en_US |
dc.subject | Serrin-type solutions | en_US |
dc.subject | spatially periodic solutions | en_US |
dc.subject | variable coefficients | en_US |
dc.title | Spatially Periodic Solutions for Evolution Anisotropic Variable‐Coefficient Navier–Stokes Equations: II. Serrin‐Type Solutions | en_US |
dc.type | Article | en_US |
dc.identifier.doi | https://doi.org/10.1002/mma.10921 | - |
dc.relation.isPartOf | Mathematical Methods in the Applied Sciences | - |
pubs.issue | 00 | - |
pubs.publication-status | Published online | - |
pubs.volume | 0 | - |
dc.identifier.eissn | 1099-1476 | - |
dc.rights.license | https://creativecommons.org/licenses/by/4.0/legalcode.en | - |
dc.rights.holder | The Author(s) | - |
Appears in Collections: | Dept of Mathematics Research Papers |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
FullText.pdf | Copyright © 2025 The Author(s). Mathematical Methods in the Applied Sciences published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited. | 1.37 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License