Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/31420
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMikhailov, SE-
dc.date.accessioned2025-06-09T06:39:28Z-
dc.date.available2025-06-04-
dc.date.available2025-06-09T06:39:28Z-
dc.date.issued2025-06-04-
dc.identifierORCiD: Sergey E. Mikhailov https://orcid.org/0000-0002-3268-9290-
dc.identifier.citationMikhailov, S.E. (2025) 'Spatially Periodic Solutions for Evolution Anisotropic Variable‐Coefficient Navier–Stokes Equations: II. Serrin‐Type Solutions', Mathematical Methods in the Applied Sciences, 2025, 0 (ahead of print), pp. 1 - 28. doi: 10.1002/mma.10921.en_US
dc.identifier.issn0170-4214-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/31420-
dc.descriptionData Availability Statement: This paper has no associated data.en_US
dc.description.abstractWe consider evolution (non-stationary) space-periodic solutions to the n-dimensional non-linear Navier-Stokes equations of anisotropic fluids with the viscosity coefficient tensor variable in space and time and satisfying the relaxed ellipticity condition. Employing the Galerkin algorithm, we prove the existence of Serrin-type solutions, that is, weak solutions with the velocity in the periodic space L2(0,T;H˙n/2#σ), n≥2. The solution uniqueness and regularity results are also discussed.en_US
dc.description.sponsorshipUK Research and Innovation (UKRI)en_US
dc.format.extent1 - 28-
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherWileyen_US
dc.rightsCreative Commons Attribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectanisotropic Navier-Stokes equationsen_US
dc.subjectevolution Navier–Stokes equationsen_US
dc.subjectpartial differential equationsen_US
dc.subjectrelaxed ellipticity conditionen_US
dc.subjectSerrin-type solutionsen_US
dc.subjectspatially periodic solutionsen_US
dc.subjectvariable coefficientsen_US
dc.titleSpatially Periodic Solutions for Evolution Anisotropic Variable‐Coefficient Navier–Stokes Equations: II. Serrin‐Type Solutionsen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.1002/mma.10921-
dc.relation.isPartOfMathematical Methods in the Applied Sciences-
pubs.issue00-
pubs.publication-statusPublished online-
pubs.volume0-
dc.identifier.eissn1099-1476-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dc.rights.holderThe Author(s)-
Appears in Collections:Dept of Mathematics Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2025 The Author(s). Mathematical Methods in the Applied Sciences published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.1.37 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons