Please use this identifier to cite or link to this item:
http://bura.brunel.ac.uk/handle/2438/31467
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Qin, C | - |
dc.contributor.author | Yang, R | - |
dc.contributor.author | You, W | - |
dc.contributor.author | Chen, Z | - |
dc.contributor.author | Zhu, L | - |
dc.contributor.author | Huang, M | - |
dc.contributor.author | Wang, Z | - |
dc.date.accessioned | 2025-06-15T14:59:32Z | - |
dc.date.available | 2025-06-15T14:59:32Z | - |
dc.date.issued | 2025-04-28 | - |
dc.identifier | ORCiD: Riu Yang https://orcid.org/0000-0002-5634-5476 | - |
dc.identifier | ORCiD: Wenlong You https://orcid.org/0009-0002-6023-4469 | - |
dc.identifier | ORCiD: Zhige Chen https://orcid.org/0009-0007-1208-5880 | - |
dc.identifier | ORCiD: Mengjie Huang https://orcid.org/0000-0001-8163-8679 | - |
dc.identifier | ORCiD: Siding Wang https://orcid.org/0000-0002-9576-7401 | - |
dc.identifier.citation | Qin C. et al. (2025) 'EEGUnity: Open-Source Tool in Facilitating Unified EEG Datasets Toward Large-Scale EEG Model', IEEE Transactions on Neural Systems and Rehabilitation Engineering, 33, pp. 1653 - 1663. doi: 10.1109/TNSRE.2025.3565158. | en_US |
dc.identifier.issn | 1534-4320 | - |
dc.identifier.uri | https://bura.brunel.ac.uk/handle/2438/31467 | - |
dc.description.abstract | The increasing number of dispersed EEG dataset publications and the advancement of large-scale Electroencephalogram (EEG) models have increased the demand for practical tools to manage diverse EEG datasets. However, the inherent complexity of EEG data, characterized by variability in content data, metadata, and data formats, poses challenges for integrating multiple datasets and conducting large-scale EEG model research. To tackle the challenges, this paper introduces EEGUnity, an open-source tool that incorporates modules of "EEG Parser", "Correction", "Batch Processing", and "Large Language Model Boost". Leveraging the functionality of such modules, EEGUnity facilitates the efficient management of multiple EEG datasets, such as intelligent data structure inference, data cleaning, and data unification. In addition, the capabilities of EEGUnity ensure high data quality and consistency, providing a reliable foundation for large-scale EEG data research. EEGUnity is evaluated across 25 EEG datasets from different sources, offering several typical batch processing workflows. The results demonstrate the high performance and flexibility of EEGUnity in parsing and data processing. The project code is publicly available at github.com/Baizhige/EEGUnity. | en_US |
dc.description.sponsorship | University Ethics Committee of Xi’an Jiaotong-Liverpool University (XJTLU) on March 31 2020 (Grant Number: EXT20-01-07); National Natural Science Foundation of China (Grant Number: 72401233); Jiangsu Provincial Qinglan Project, Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant Number: 23KJB520038); Research Enhancement Fund of XJTLU (Grant Number: REF-23-01-008). | en_US |
dc.format.extent | 1653 - 1663 | - |
dc.format.medium | Print-Electronic | - |
dc.language | English | - |
dc.language.iso | en_US | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_US |
dc.rights | Creative Commons Attribution 4.0 International | - |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | brain-computer-interface | en_US |
dc.subject | electroencephalogram data integration | en_US |
dc.subject | large-scale model | en_US |
dc.subject | open-source software | en_US |
dc.title | EEGUnity: Open-Source Tool in Facilitating Unified EEG Datasets Toward Large-Scale EEG Model | en_US |
dc.type | Article | en_US |
dc.date.dateAccepted | 2025-04-24 | - |
dc.identifier.doi | https://doi.org/10.1109/TNSRE.2025.3565158 | - |
dc.relation.isPartOf | IEEE Transactions on Neural Systems and Rehabilitation Engineering | - |
pubs.publication-status | Published | - |
pubs.volume | 33 | - |
dc.identifier.eissn | 1558-0210 | - |
dc.rights.license | https://creativecommons.org/licenses/by/4.0/legalcode.en | - |
dcterms.dateAccepted | 2025-04-24 | - |
dc.rights.holder | The Authors | - |
Appears in Collections: | Dept of Computer Science Research Papers |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
FullText.pdf | Copyright © 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ | 3.39 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License