Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/31757
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWan, F-
dc.contributor.authorFondrevelle, J-
dc.contributor.authorWang, T-
dc.contributor.authorWang, K-
dc.contributor.authorDuclos, A-
dc.coverage.spatialPorto, Portugal-
dc.date.accessioned2025-08-18T12:20:34Z-
dc.date.available2025-08-18T12:20:34Z-
dc.date.issued2024-11-18-
dc.identifierORCiD: Fang Wan https://orcid.org/0000-0003-1049-4959-
dc.identifierORCiD: Julien Fondrevelle https://orcid.org/0000-0002-8505-0212-
dc.identifierORCiD: Tao Wang https://orcid.org/0000-0001-8100-6743-
dc.identifierORCiD: Kezhi Wang https://orcid.org/0000-0001-8602-0800-
dc.identifierORCiD: Antoine Duclos https://orcid.org/0000-0002-8915-4203-
dc.identifier.citationWan, F. et al. (2024) 'Optimizing Small-Scale Surgery Scheduling with Large Language Model', Proceedings of the International Conference on Informatics in Control Automation and Robotics, Porto, Portugal, 18-20 November, Volume 1: ICINCO, pp. 222 - 228. doi: 10.5220/0012894400003822.en_US
dc.identifier.isbn978-989-758-717-7-
dc.identifier.issn2184-2809-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/31757-
dc.description.abstractLarge Language Model (LLM) have recently been widely used in various fields. In this work, we apply LLMs for the first time to a classic combinatorial optimization problem—surgery scheduling—while considering multiple objectives. Traditional multi-objective algorithms, such as the Non-Dominated Sorting Genetic Algorithm II (NSGA-II), usually require domain expertise to carefully design operators to achieve satisfactory performance. In this work, we first design prompts to enable LLM to directly solve small-scale surgery scheduling problems. As the scale increases, we introduce an innovative method combining LLM with NSGA-II (LLM-NSGA), where LLM act as evolutionary optimizers to perform selection, crossover, and mutation operations instead of the conventional NSGA-II mechanisms. The results show that when the number of cases is up to 40, LLM can directly obtain high-quality solutions based on prompts. As the number of cases increases, LLM-NSGA can find better solutions than NSGA-II.en_US
dc.description.sponsorshipThis work is partially supported by HarmonicAI - Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health distributed by European Commission (Call: HORIZON-MSCA-2022-SE-01-01, Project number: 101131117 and UKRI grant number EP/Y03743X/1); The authors sincerely acknowledge the financial support (n°23 015699 01) provided by the Auvergne Rhône-Alpes region.en_US
dc.format.extent222 - 228-
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherSciTePress, on behalf of ICINCO (in cooperation with IFAC)-
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.source21st International Conference on Informatics in Control, Automation and Robotics-
dc.source21st International Conference on Informatics in Control, Automation and Robotics-
dc.subjectsurgery schedulingen_US
dc.subjectlarge language modelen_US
dc.subjectcombinatorial optimizationen_US
dc.subjectmulti-objectiveen_US
dc.titleOptimizing Small-Scale Surgery Scheduling with Large Language Modelen_US
dc.typeConference Paperen_US
dc.date.dateAccepted2024-06-30-
dc.identifier.doihttps://doi.org/10.5220/0012894400003822-
dc.relation.isPartOfProceedings of the International Conference on Informatics in Control Automation and Robotics-
pubs.finish-date2024-11-20-
pubs.finish-date2024-11-20-
pubs.publication-statusPublished-
pubs.start-date2024-11-18-
pubs.start-date2024-11-18-
pubs.volume1-
dc.rights.licensehttps://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.en-
dcterms.dateAccepted2024-06-30-
dc.rights.holderThe Author(s)-
Appears in Collections:Dept of Computer Science Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2024 The Author(s). Published under CC license (CC BY-NC-ND 4.0).551.54 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons