Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/32128
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, X-
dc.contributor.authorWu, Q-
dc.contributor.authorFan, P-
dc.contributor.authorWang, K-
dc.contributor.authorCheng, N-
dc.contributor.authorLetaief, KB-
dc.date.accessioned2025-10-11T10:31:04Z-
dc.date.available2025-10-11T10:31:04Z-
dc.date.issued2025-08-18-
dc.identifierORCiD: Qiong Wu https://orcid.org/0000-0002-4899-1718-
dc.identifierORCiD: Pingyi Fan https://orcid.org/0000-0002-0658-6079-
dc.identifierORCiD: Kezhi Wang https://orcid.org/0000-0001-8602-0800-
dc.identifierORCiD: Nan Cheng https://orcid.org/0000-0001-7907-2071-
dc.identifierORCiD: Khaled B. Letaief https://orcid.org/0000-0003-2519-6401-
dc.identifier.citationLi, X. et al. (2025) 'Federated Learning Assisted Edge Caching Scheme Based on Lightweight Architecture DDPM', IEEE Networking Letters, 0 (early access), pp. 1 - 5. doi: 10.1109/LNET.2025.3599196.en_US
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/32128-
dc.description.abstractEdge caching is an emerging technology that empowers caching units at edge nodes, allowing users to fetch contents of interest that have been pre-cached at the edge nodes. The key to pre-caching is to maximize the cache hit percentage for cached content without compromising users’ privacy. In this letter, we propose a federated learning (FL) assisted edge caching scheme based on lightweight architecture denoising diffusion probabilistic model (LDPM). Our simulation results verify that our proposed scheme achieves a higher cache hit percentage compared to existing FL-based methods and baseline methods.en_US
dc.description.sponsorship10.13039/501100001809-National Natural Science Foundation of China (Grant Number: 61701197).en_US
dc.format.extent1 - 5-
dc.format.mediumElectronic-
dc.language.isoen_USen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.rightsCreative Commons Attribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectfederated learningen_US
dc.subjectdenoising diffusion probabilistic modelen_US
dc.subjectedge cachingen_US
dc.titleFederated Learning Assisted Edge Caching Scheme Based on Lightweight Architecture DDPMen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.1109/LNET.2025.3599196-
dc.relation.isPartOfIEEE Networking Letters-
pubs.issueearly access-
pubs.publication-statusPublished-
pubs.volume0-
dc.identifier.eissn2576-3156-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dc.rights.holderThe Author(s)-
Appears in Collections:Dept of Computer Science Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdf“For the purpose of open access, the author(s) has applied a Creative Commons Attribution (CC BY) license to any Accepted Manuscript version arising.”973.18 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons