Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/32264
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaravias, Y-
dc.contributor.authorSymeonides, SD-
dc.contributor.authorTzavalis, E-
dc.date.accessioned2025-11-01T11:24:47Z-
dc.date.available2025-11-01T11:24:47Z-
dc.date.issued2017-12-11-
dc.identifierORCiD: Yiannis Karavias https://orcid.org/0000-0002-1208-5537-
dc.identifier.citationKaravias, Y., and . (2018) 'Higher order expansions for error variance matrix estimates in the Gaussian AR(1) linear regression model', Statistics and Probability Letters, 135, pp. 54 - 59. doi: 10.1016/j.spl.2017.11.016.en_US
dc.identifier.issn0167-7152-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/32264-
dc.descriptionSupplementary data are available online at: https://www.sciencedirect.com/science/article/pii/S016771521730370X?via%3Dihub#appSC .en_US
dc.description.abstractWe derive a stochastic expansion of the error variance–covariance matrix estimator for the linear regression model under Gaussian AR(1) errors. The higher order accuracy terms of the refined formula are not directly derived from formal Edgeworth-type expansions but instead, the paper adopts Magadalinos’ (1992) stochastic order of ω which is a convenient device to obtain the equivalent relation between the stochastic expansion and the asymptotic approximation of corresponding distribution functions. A Monte Carlo experiment compares tests based on the new estimator with others in the literature and shows that the new tests perform well.en_US
dc.format.extent54 - 59-
dc.format.mediumPrint-Electronic-
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectlinear regressionen_US
dc.subjectAR(1) disturbancesen_US
dc.subjectstochastic expansionsen_US
dc.subjectasymptotic approximationsen_US
dc.subjectautocorrelation robust inferenceen_US
dc.titleHigher order expansions for error variance matrix estimates in the Gaussian AR(1) linear regression modelen_US
dc.typeArticleen_US
dc.date.dateAccepted2017-11-28-
dc.identifier.doihttps://doi.org/10.1016/j.spl.2017.11.016-
dc.relation.isPartOfStatistics and Probability Letters-
pubs.publication-statusPublished-
pubs.volume135-
dc.identifier.eissn1879-2103-
dc.rights.licensehttps://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.en-
dcterms.dateAccepted2017-11-28-
dc.rights.holderElsevier B.V.-
Appears in Collections:Dept of Economics and Finance Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2017 Elsevier B.V. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/ (see: https://www.elsevier.com/about/policies/sharing ).200.42 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons