Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/32279
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGao, P-
dc.contributor.authorLiu, F-
dc.contributor.authorYang, Q-
dc.contributor.authorWang, J-
dc.coverage.spatialLondon, UK-
dc.date.accessioned2025-11-04T15:25:52Z-
dc.date.available2025-11-04T15:25:52Z-
dc.date.issued2025-10-01-
dc.identifierORCiD: Qingping Yang https://orcid.org/0000-0002-2557-8752-
dc.identifierArticle number: 01001-
dc.identifier.citationGao, P. et al. (2025) 'Research on local visual global localization method based on out-of-view reference of spatial point association', MATEC Web of Conferences, 413, 01001, pp. 1 - 5. doi: 10.1051/matecconf/202541301001.en_US
dc.identifier.issn2274-7214-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/32279-
dc.description.abstractThe global localisation of spatial points is a critical step in tasks such as object tracking, motion analysis and pose measurement. This paper addresses the critical issue of global localisation when spatial points are scattered and cannot be contained within the same field of view. It proposes a local visual global localisation method based on an out-of-view reference through spatial point association. By constructing a local measurement and localisation model using parallel binocular vision and a spatial coordinate transformation model that associates local regions with the global reference, the global localisation of spatial points inside and outside the field of view is achieved. Experimental results demonstrate that the localisation accuracy of spatial points is less than 0.1 mm in terms of distance measurement. This method is useful for cooperative multi-camera localization and multi-point measurement in large 3D spaces.en_US
dc.description.sponsorshipThe present study received financial support from the China Higher Education Society Project 23SZH0413, the National Higher Education Computer Basic Education Research Association Project 2024-AFCEC-460, and the Nankai University Educational Reform Project NKJG2025017.-
dc.format.extent1 - 5-
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.language.isoenen_US
dc.publisherEDP Sciencesen_US
dc.rightsCreative Commons Attribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.sourceInternational Conference on Measurement, AI, Quality and Sustainability (MAIQS 2025)-
dc.sourceInternational Conference on Measurement, AI, Quality and Sustainability (MAIQS 2025)-
dc.titleResearch on local visual global localization method based on out-of-view reference of spatial point associationen_US
dc.typeConference Paperen_US
dc.date.dateAccepted2025-06-08-
dc.identifier.doihttps://doi.org/10.1051/matecconf/202541301001-
dc.relation.isPartOfMATEC Web of Conferences-
pubs.finish-date2025-08-28-
pubs.finish-date2025-08-28-
pubs.publication-statusPublished-
pubs.start-date2025-08-26-
pubs.start-date2025-08-26-
pubs.volume413-
dc.identifier.eissn2261-236X-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dcterms.dateAccepted2025-06-08-
dc.rights.holderThe Authors-
Appears in Collections:Dept of Mechanical and Aerospace Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © The Authors, published by EDP Sciences, 2025. Licence: Creative Commons. This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.589.45 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons