Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/32366
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChuong, TD-
dc.contributor.authorLiu, C-
dc.contributor.authorYu, X-
dc.date.accessioned2025-11-18T14:40:04Z-
dc.date.available2025-11-18T14:40:04Z-
dc.date.issued2025-09-
dc.identifierORCiD: Thai Doan Chuong https://orcid.org/0000-0003-0893-5604-
dc.identifier.citationChuong, T.D., Liu, C. and Yu, X. (2025) 'Decomposition for Large-Scale Optimization Problems: An Overview', Artificial Intelligence Science and Engineering, 1 (3), pp. 157 - 174. doi: 10.23919/aise.2025.000012.en_US
dc.identifier.issn2097-5104-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/32366-
dc.description.abstractFormalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints, resulting in what is termed a large-scale optimization problem. Nowadays, such large-scale optimization problems are solved using computing machines, leading to an enormous computational time being required, which may delay deriving timely solutions. Decomposition methods, which partition a large-scale optimization problem into lower-dimensional subproblems, represent a key approach to addressing time-efficiency issues. There has been significant progress in both applied mathematics and emerging artificial intelligence approaches on this front. This work aims at providing an overview of the decomposition methods from both the mathematics and computer science points of view. We also remark on the state-of-the-art developments and recent applications of the decomposition methods, and discuss the future research and development perspectives.en_US
dc.description.sponsorship10.13039/501100000923-The Australian Research Council (Grant Number: DP200101197,DP230101107)en_US
dc.format.extent157 - 174-
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherIEEE on behalf of Southwestern Universityen_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectdecomposition methodsen_US
dc.subjectnonlinear optimizationen_US
dc.subjectlarge-scale problemsen_US
dc.subjectcomputational intelligenceen_US
dc.titleDecomposition for Large-Scale Optimization Problems: An Overviewen_US
dc.typeArticleen_US
dc.date.dateAccepted2025-08-20-
dc.identifier.doihttps://doi.org/10.23919/aise.2025.000012-
dc.relation.isPartOfArtificial Intelligence Science and Engineering-
pubs.issue3-
pubs.publication-statusPublished-
pubs.volume1-
dc.identifier.eissn2097-5104-
dc.rights.licensehttps://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.en-
dcterms.dateAccepted2025-08-20-
dc.rights.holderThe Author(s)-
Appears in Collections:Dept of Mathematics Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2025 The Author(s). This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/).3.29 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons