Please use this identifier to cite or link to this item:
http://bura.brunel.ac.uk/handle/2438/32637Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Qin, C | - |
| dc.contributor.author | Yang, R | - |
| dc.contributor.author | Zhu, L | - |
| dc.contributor.author | Chen, Z | - |
| dc.contributor.author | Huang, M | - |
| dc.contributor.author | Alsaadi, FE | - |
| dc.contributor.author | Wang, Z | - |
| dc.date.accessioned | 2026-01-13T12:15:40Z | - |
| dc.date.available | 2026-01-13T12:15:40Z | - |
| dc.date.issued | 2025-11-19 | - |
| dc.identifier | ORCiD: Chengxuan Qin https://orcid.org/0009-0009-8463-3457 | - |
| dc.identifier | ORCiD: Rui Yang https://orcid.org/0000-0002-5634-5476 | - |
| dc.identifier | ORCiD: Longsheng Zhu https://orcid.org/0009-0003-6120-4728 | - |
| dc.identifier | ORCiD: Zhige Chen https://orcid.org/0009-0007-1208-5880 | - |
| dc.identifier | ORCiD: Mengjie Huang https://orcid.org/0000-0001-8163-8679 | - |
| dc.identifier | ORCiD: Fuad E. Alsaadi https://orcid.org/0000-0001-6420-3948 | - |
| dc.identifier | ORCiD: Zidong Wang https://orcid.org/0000-0002-9576-7401 | - |
| dc.identifier | PubMed ID: 41259181 | - |
| dc.identifier.citation | Qin, C. et al. (2025) 'EEG-Infinity: A Mathematical Modeling-Inspired Architecture for Addressing Cross-Device Challenges in Motor Imagery', IEEE Transactions on Neural Systems and Rehabilitation Engineering, 33, pp. 4669 - 4686. doi: 10.1109/TNSRE.2025.3635018. | en_US |
| dc.identifier.issn | 1534-4320 | - |
| dc.identifier.uri | https://bura.brunel.ac.uk/handle/2438/32637 | - |
| dc.description.abstract | The distribution of electroencephalogram (EEG) data generally varies across datasets due to the huge difference between the physical structure of brain-computer interface devices, known as cross-device variability. Such variability poses great challenges in EEG decoding and hinders the standardized utilization of EEG datasets. In this study, we explore a new issue concerning the cross-device variability problem, pointing to the gap in the existing studies facing cross-device variability. To tackle this challenge, our paper is the first to model the cross-device variability problem through a “sequentially comprehensive formula” and a “spatial comprehensive formula”. Inspired by this modeling, a novel deep domain adaptation network named EEG-Infinity is proposed, incorporating replaceable EEG feature extraction backbones with a novel structure named “alignment head”. To show the effectiveness of the proposed EEG-Infinity, systematic experiments are conducted across four different EEG-based motor imagery datasets under 48 cases. The experimental results highlight the superior performance of the proposed EEG-Infinity over commonly used approaches with an average classification accuracy improvement of 1.51% across 34 cases, laying a foundation for research in large-scale EEG models. The code can be assessed at https://github.com/Baizhige/cd-infinity | en_US |
| dc.description.sponsorship | 10.13039/501100001809-National Natural Science Foundation of China (Grant Number: 72401233); Jiangsu Provincial Scientific Research Center of Applied Mathematics (Grant Number: BK20233002); 10.13039/501100013088-Qinglan Project of Jiangsu Province of China; Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant Number: 23KJB520038); Research Enhancement Fund of Xi'an Jiaotong-Liverpool University (XJTLU) (Grant Number: REF-23-01-008); 10.13039/501100004686-Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia (Grant Number: GPIP194-135-2024). | en_US |
| dc.format.extent | 4669 - 4686 | - |
| dc.format.medium | Print-Electronic | - |
| dc.language | English | - |
| dc.language.iso | en_US | en_US |
| dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_US |
| dc.rights | Creative Commons Attribution 4.0 International | - |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
| dc.subject | electroencephalogram | en_US |
| dc.subject | cross-device variability | en_US |
| dc.subject | brain-computer-interface | en_US |
| dc.subject | mathematical modeling | en_US |
| dc.subject | transfer learning | en_US |
| dc.title | EEG-Infinity: A Mathematical Modeling-Inspired Architecture for Addressing Cross-Device Challenges in Motor Imagery | en_US |
| dc.type | Article | en_US |
| dc.date.dateAccepted | 2025-11-12 | - |
| dc.identifier.doi | https://doi.org/10.1109/TNSRE.2025.3635018 | - |
| dc.relation.isPartOf | IEEE Transactions on Neural Systems and Rehabilitation Engineering | - |
| pubs.publication-status | Published | - |
| pubs.volume | 33 | - |
| dc.identifier.eissn | 1558-0210 | - |
| dc.rights.license | https://creativecommons.org/licenses/by/4.0/legalcode.en | - |
| dcterms.dateAccepted | 2025-11-12 | - |
| dc.rights.holder | The Authors | - |
| dc.contributor.orcid | Chengxuan Qin [0009-0009-8463-3457] | - |
| dc.contributor.orcid | Rui Yang [0000-0002-5634-5476] | - |
| dc.contributor.orcid | Longsheng Zhu [0009-0003-6120-4728] | - |
| dc.contributor.orcid | Zhige Chen [0009-0007-1208-5880] | - |
| dc.contributor.orcid | Mengjie Huang [0000-0001-8163-8679] | - |
| dc.contributor.orcid | Fuad E. Alsaadi [0000-0001-6420-3948] | - |
| dc.contributor.orcid | Zidong Wang [0000-0002-9576-7401] | - |
| Appears in Collections: | Dept of Computer Science Research Papers | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| FullText.pdf | Copyright © 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 International License. For more information, see https://creativecommons.org/licenses/by/4.0/ | 13.79 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License