Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/32637
Full metadata record
DC FieldValueLanguage
dc.contributor.authorQin, C-
dc.contributor.authorYang, R-
dc.contributor.authorZhu, L-
dc.contributor.authorChen, Z-
dc.contributor.authorHuang, M-
dc.contributor.authorAlsaadi, FE-
dc.contributor.authorWang, Z-
dc.date.accessioned2026-01-13T12:15:40Z-
dc.date.available2026-01-13T12:15:40Z-
dc.date.issued2025-11-19-
dc.identifierORCiD: Chengxuan Qin https://orcid.org/0009-0009-8463-3457-
dc.identifierORCiD: Rui Yang https://orcid.org/0000-0002-5634-5476-
dc.identifierORCiD: Longsheng Zhu https://orcid.org/0009-0003-6120-4728-
dc.identifierORCiD: Zhige Chen https://orcid.org/0009-0007-1208-5880-
dc.identifierORCiD: Mengjie Huang https://orcid.org/0000-0001-8163-8679-
dc.identifierORCiD: Fuad E. Alsaadi https://orcid.org/0000-0001-6420-3948-
dc.identifierORCiD: Zidong Wang https://orcid.org/0000-0002-9576-7401-
dc.identifierPubMed ID: 41259181-
dc.identifier.citationQin, C. et al. (2025) 'EEG-Infinity: A Mathematical Modeling-Inspired Architecture for Addressing Cross-Device Challenges in Motor Imagery', IEEE Transactions on Neural Systems and Rehabilitation Engineering, 33, pp. 4669 - 4686. doi: 10.1109/TNSRE.2025.3635018.en_US
dc.identifier.issn1534-4320-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/32637-
dc.description.abstractThe distribution of electroencephalogram (EEG) data generally varies across datasets due to the huge difference between the physical structure of brain-computer interface devices, known as cross-device variability. Such variability poses great challenges in EEG decoding and hinders the standardized utilization of EEG datasets. In this study, we explore a new issue concerning the cross-device variability problem, pointing to the gap in the existing studies facing cross-device variability. To tackle this challenge, our paper is the first to model the cross-device variability problem through a “sequentially comprehensive formula” and a “spatial comprehensive formula”. Inspired by this modeling, a novel deep domain adaptation network named EEG-Infinity is proposed, incorporating replaceable EEG feature extraction backbones with a novel structure named “alignment head”. To show the effectiveness of the proposed EEG-Infinity, systematic experiments are conducted across four different EEG-based motor imagery datasets under 48 cases. The experimental results highlight the superior performance of the proposed EEG-Infinity over commonly used approaches with an average classification accuracy improvement of 1.51% across 34 cases, laying a foundation for research in large-scale EEG models. The code can be assessed at https://github.com/Baizhige/cd-infinityen_US
dc.description.sponsorship10.13039/501100001809-National Natural Science Foundation of China (Grant Number: 72401233); Jiangsu Provincial Scientific Research Center of Applied Mathematics (Grant Number: BK20233002); 10.13039/501100013088-Qinglan Project of Jiangsu Province of China; Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant Number: 23KJB520038); Research Enhancement Fund of Xi'an Jiaotong-Liverpool University (XJTLU) (Grant Number: REF-23-01-008); 10.13039/501100004686-Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia (Grant Number: GPIP194-135-2024).en_US
dc.format.extent4669 - 4686-
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.rightsCreative Commons Attribution 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectelectroencephalogramen_US
dc.subjectcross-device variabilityen_US
dc.subjectbrain-computer-interfaceen_US
dc.subjectmathematical modelingen_US
dc.subjecttransfer learningen_US
dc.titleEEG-Infinity: A Mathematical Modeling-Inspired Architecture for Addressing Cross-Device Challenges in Motor Imageryen_US
dc.typeArticleen_US
dc.date.dateAccepted2025-11-12-
dc.identifier.doihttps://doi.org/10.1109/TNSRE.2025.3635018-
dc.relation.isPartOfIEEE Transactions on Neural Systems and Rehabilitation Engineering-
pubs.publication-statusPublished-
pubs.volume33-
dc.identifier.eissn1558-0210-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dcterms.dateAccepted2025-11-12-
dc.rights.holderThe Authors-
dc.contributor.orcidChengxuan Qin [0009-0009-8463-3457]-
dc.contributor.orcidRui Yang [0000-0002-5634-5476]-
dc.contributor.orcidLongsheng Zhu [0009-0003-6120-4728]-
dc.contributor.orcidZhige Chen [0009-0007-1208-5880]-
dc.contributor.orcidMengjie Huang [0000-0001-8163-8679]-
dc.contributor.orcidFuad E. Alsaadi [0000-0001-6420-3948]-
dc.contributor.orcidZidong Wang [0000-0002-9576-7401]-
Appears in Collections:Dept of Computer Science Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 International License. For more information, see https://creativecommons.org/licenses/by/4.0/13.79 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons