Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/32652
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, F-
dc.contributor.authorYang, R-
dc.contributor.authorCheng, H-
dc.contributor.authorHuang, M-
dc.contributor.authorZhang, F-
dc.contributor.authorAlsaadi, FE-
dc.contributor.authorWang, Z-
dc.date.accessioned2026-01-15T15:23:25Z-
dc.date.available2026-01-15T15:23:25Z-
dc.date.issued2025-10-31-
dc.identifierORCiD: Rui Yang https://orcid.org/0000-0002-5634-5476-
dc.identifierORCiD: Mengjie Huang https://orcid.org/0000-0001-8163-8679-
dc.identifierORCiD: Fuad E. Alsaadi https://orcid.org/0000-0001-6420-3948-
dc.identifierORCiD: Zidong Wang https://orcid.org/0000-0002-9576-7401-
dc.identifier.citationLi, F. et al. (2025) 'Multi-Scale Shapley Adaptation Pruning: Realizing Backdoor Defense in Brain-Computer Interface With Shapley-Value-Based Neural Network Pruning', IEEE Transactions on Emerging Topics in Computational Intelligence, 0 (early access), pp. 1 - 15. doi: 10.1109/TETCI.2025.3619564.en_US
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/32652-
dc.description.abstractIn the recent years, researchers made significant progress in electroencephalogram (EEG) classification tasks using deep neural networks, especially in brain-computer interface (BCI) systems. BCI systems rely on EEG signals for effective human-computer interaction, and deep neural networks have shown excellent performance in processing EEG signals. However, backdoor attack have a significant impact on the security of EEG-based BCI systems. In this paper, a novel multi-scale Shapley adaptation pruning (MSAP) method is proposed to solve the security problem caused by backdoor attack. In the proposed MSAP, the multi-scale Shapley segmented mapping method is used to accurately locate the backdoor weights. Subsequently, the cost function is utilized to adaptively prune the backdoor weights to ensure normal classification. Ultimately, the validity of the experiments is verified on the BCI competition public datasets (BCI-III-IVb, BCI-III-IVa, and BCI-IV-1a). The results show that the proposed MSAP method outperforms other pruning methods in defending EEG-based BCI systems against backdoor attack, maintaining a high baseline classification accuracy while reducing the attack success rate.en_US
dc.description.sponsorship10.13039/501100001809-National Natural Science Foundation of China (Grant Number: 72401233); Jiangsu Provincial Scientific Research Center of Applied Mathematics (Grant Number: BK20233002); 10.13039/501100013088-Qinglan Project of Jiangsu Province of China; Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant Number: 23KJB520038); Research Enhancement Fund of XJTLU (Grant Number: REF-23-01-008); Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia (Grant Number: GPIP: 72-135-2024).en_US
dc.format.extent1 - 15-
dc.format.mediumElectronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.subjectelectroencephalogramen_US
dc.subjectbrain-computer interfaceen_US
dc.subjectbackdoor attacken_US
dc.subjectShapley valueen_US
dc.titleMulti-Scale Shapley Adaptation Pruning: Realizing Backdoor Defense in Brain-Computer Interface With Shapley-Value-Based Neural Network Pruningen_US
dc.typeArticleen_US
dc.date.dateAccepted2025-08-31-
dc.identifier.doihttps://doi.org/10.1109/TETCI.2025.3619564-
dc.relation.isPartOfIEEE Transactions on Emerging Topics in Computational Intelligence-
pubs.issue0-
pubs.publication-statusPublished-
pubs.volume00-
dc.identifier.eissn2471-285X-
dcterms.dateAccepted2025-08-31-
dc.contributor.orcidYang, Rui [0000-0002-5634-5476]-
dc.contributor.orcidHuang, Mengjie [0000-0001-8163-8679]-
dc.contributor.orcidAlsaadi, Fuad E. [0000-0001-6420-3948]-
dc.contributor.orcidWang, Zidong [0000-0002-9576-7401]-
Appears in Collections:Dept of Computer Science Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfFor the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising.4.62 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.