Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/32812
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBashraheel, M-
dc.contributor.authorGhinea, G-
dc.date.accessioned2026-02-15T16:04:54Z-
dc.date.available2026-02-15T16:04:54Z-
dc.date.issued2026-02-12-
dc.identifierORCiD: Mohammed Bashraheel https://orcid.org/0009-0003-0046-1034-
dc.identifierORCiD: Gheorghita Ghinea https://orcid.org/0000-0003-2578-5580-
dc.identifier.citationBashraheel, M. and Ghinea, G. (2026) 'How does leveraging artificial intelligence in assessments impact student outcomes? a systematic review', Computer Science Review, 61, 100929, pp.1 - 19. doi: 10.1016/j.cosrev.2026.100929.en_US
dc.identifier.issn1574-0137-
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/32812-
dc.descriptionSupplementary data are available online at: https://www.sciencedirect.com/science/article/pii/S1574013726000389?via%3Dihub#s0255 .en_US
dc.description.abstractAdvancements in Artificial Intelligence (AI) are having a profound impact across numerous domains, including education, particularly in the area of assessment. Within higher education, AI-based assessment has gained increasing attention for its potential to enhance student learning processes and outcomes. Following PRISMA guidelines and covering research published between 1997 and 2024, this systematic literature review (SLR) analyzes 159 studies that apply AI techniques, including machine learning (ML), deep learning (DL), and large language models (LLMs), in formative and summative assessment contexts to predict student outcomes. The findings indicate that, while AI integration can enhance assessment strategies and learning outcomes, classification-based models dominate the literature, and more than 80% of studies rely on private or institution-specific datasets, limiting reproducibility and large-scale validation. This review offers a comprehensive comparative synthesis of AI-driven formative and summative assessment approaches in higher education, highlighting methodological trends, evidence, and research gaps.en_US
dc.format.extent1 - 19-
dc.format.mediumPrint-Electronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 International-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectmachine learningen_US
dc.subjectdeep learningen_US
dc.subjectlarge language modelsen_US
dc.subjectformative assessmenten_US
dc.subjectsummative assessmenten_US
dc.subjecthigher educationen_US
dc.titleHow does leveraging artificial intelligence in assessments impact student outcomes? a systematic reviewen_US
dc.typeArticleen_US
dc.date.dateAccepted2026-02-06-
dc.identifier.doihttps://doi.org/10.1016/j.cosrev.2026.100929-
dc.relation.isPartOfComputer Science Review-
pubs.publication-statusPublished-
pubs.volume61-
dc.identifier.eissn1876-7745-
dc.rights.licensehttps://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.en-
dcterms.dateAccepted2026-02-06-
dc.rights.holderThe Author(s)-
dc.contributor.orcidBashraheel, Mohammed [0009-0003-0046-1034]-
dc.contributor.orcidGhinea, Gheorghita [0000-0003-2578-5580]-
dc.identifier.number100929-
Appears in Collections:Dept of Computer Science Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2026 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license ( https://creativecommons.org/licenses/by-nc-nd/4.0/ ).3.94 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons