Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/20848
Title: Determinants of accelerated metabolomic and epigenetic aging in a UK cohort
Authors: Robinson, O
Chadeau Hyam, M
Karaman, I
Climaco Pinto, R
Ala-Korpela, M
Handakas, E
Fiorito, G
Gao, H
Heard, A
Jarvelin, MR
Lewis, M
Pazoki, R
Polidoro, S
Tzoulaki, I
Wielscher, M
Elliott, P
Vineis, P
Keywords: accelerated aging;affective mood disorders;DNA methylation;metabolomics;molecular biology of aging;risk factors
Issue Date: 3-May-2020
Publisher: Wiley
Citation: Robinson, O, Chadeau Hyam, M, Karaman, I, et al. Determinants of accelerated metabolomic and epigenetic aging in a UK cohort. Aging Cell. 2020; 00:e13149.
Abstract: Markers of biological aging have potential utility in primary care and public health. We developed a model of age based on untargeted metabolic profiling across multiple platforms, including nuclear magnetic resonance spectroscopy and liquid chromatography–mass spectrometry in urine and serum, within a large sample (N = 2,239) from the UK Airwave cohort. We validated a subset of model predictors in a Finnish cohort including repeat measurements from 2,144 individuals. We investigated the determinants of accelerated aging, including lifestyle and psychological risk factors for premature mortality. The metabolomic age model was well correlated with chronological age (mean r = .86 across independent test sets). Increased metabolomic age acceleration (mAA) was associated after false discovery rate (FDR) correction with overweight/obesity, diabetes, heavy alcohol use and depression. DNA methylation age acceleration measures were uncorrelated with mAA. Increased DNA methylation phenotypic age acceleration (N = 1,110) was associated after FDR correction with heavy alcohol use, hypertension and low income. In conclusion, metabolomics is a promising approach for the assessment of biological age and appears complementary to established epigenetic clocks.
URI: http://bura.brunel.ac.uk/handle/2438/20848
DOI: http://dx.doi.org/10.1111/acel.13149
ISSN: 1474-9718
Other Identifiers: e13149
e13149
Appears in Collections:Dept of Life Sciences Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdf1.11 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.