Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/21157
Title: Semi-solid Compression of Nano/Micro-Particle Reinforced Al-Cu Composites: An In Situ Synchrotron Tomographic Study
Authors: Wang, W
Guo, E
Phillion, AB
Eskin, DG
Wang, T
Lee, PD
Keywords: metal matrix composites;semi-solid deformation;dilatancy;hot-tearing
Issue Date: 2-Jul-2020
Publisher: Elsevier BV
Citation: Wang, W., Guo, E., Phillion, A.B., Eskin, D.G., Wang, T. and Lee, P.D. (2020) 'Semi-solid compression of nano/micro-particle reinforced Al-Cu composites: An in situ synchrotron tomographic study', Materialia, 12, 100817, pp. 1-8. doi: 10.1016/j.mtla.2020.100817.
Abstract: Four-dimensional fast synchrotron X-ray tomography has been used to investigate the semi-solid deformation of nano- and micro-particle reinforced aluminum-copper composites (Al-10 wt% Cu alloy with ~1.0 wt% Al2O3 nano and ~1.0 wt% Al2O3 micro particles). Quantitative image analysis of the semi-solid deformation behavior of three alloys (base, nano- and micro-particle reinforced) revealed the influence of the particulate size on both microstructural formation and dominant deformation mechanisms. The results showed that initial void closure and incubation period were present in the particle-free and nano-particle reinforced Al-Cu composite during semi-solid compression, while the micro-particle reinforced alloy only showed continual void growth and coalescence into cracks. The results suggest that the nano-particle reinforced composite has the best hot-tearing resistance amongst the three alloys. Improved hot-tear performance with nano-particulate reinforcement was attributed to the small liquid channel thickness, fine grain size which alters the distribution/morphology of the liquid channels, more viscous inter-dendritic liquid, and fewer initial voids.
URI: https://bura.brunel.ac.uk/handle/2438/21157
DOI: https://doi.org/10.1016/j.mtla.2020.100817
Other Identifiers: 100817
Appears in Collections:Dept of Mechanical and Aerospace Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdf3.32 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.