Please use this identifier to cite or link to this item:
Title: SVTON: Simplified Virtual Try-On
Authors: Islam, T
Miron, A
Liu, X
Li, Y
Keywords: Virtual Try-on (VTON);generative adversarial network (GAN);U-Net;segmentation;Affine Transform
Issue Date: 12-Dec-2022
Publisher: Institute of Electrical and Electronics Engineers (IEEE)
Citation: Islam, T. et al. (2022) 'SVTON: Simplified Virtual Try-On', 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA), Bahamas, 12-14 December, pp. 1 - 6.
Other Identifiers: ORCID iDs: Alina Miron; Xiaohui Liu; Yongmin Li
Appears in Collections:Dept of Computer Science Embargoed Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfEmbargoed until publication1.01 MBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.