Please use this identifier to cite or link to this item:
http://bura.brunel.ac.uk/handle/2438/25738| Title: | SVTON: Simplified Virtual Try-On |
| Authors: | Islam, T Miron, A Liu, X Li, Y |
| Keywords: | Virtual Try-on (VTON);generative adversarial network (GAN);U-Net;segmentation;Affine Transform |
| Issue Date: | 12-Dec-2022 |
| Publisher: | Institute of Electrical and Electronics Engineers (IEEE) |
| Citation: | Islam, T. et al. (2022) 'SVTON: Simplified Virtual Try-On', 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA), Bahamas, 12-14 December, pp. 1 - 6. |
| URI: | https://bura.brunel.ac.uk/handle/2438/25738 |
| Other Identifiers: | ORCID iDs: Alina Miron https://orcid.org/0000-0002-0068-4495; Xiaohui Liu https://orcid.org/0000-0003-1589-1267; Yongmin Li https://orcid.org/0000-0003-1668-2440. |
| Appears in Collections: | Dept of Computer Science Embargoed Research Papers |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| FullText.pdf | Embargoed until publication | 1.01 MB | Adobe PDF | View/Open |
Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.