Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/29346
Title: Environmentally relevant concentrations of the tricyclic antidepressant, amitriptyline, affect feeding and reproduction in a freshwater mollusc
Authors: Imiuwa, M
Baynes, A
Kanda, R
Routledge, E
Keywords: aquatic pollution;emerging contaminants;pharmaceuticals;non-target organisms;Invertebrates;biomonitoring
Issue Date: 29-Jun-2024
Publisher: Elsevier
Citation: Imiuwa, M. et al. (2024) 'Environmentally relevant concentrations of the tricyclic antidepressant, amitriptyline, affect feeding and reproduction in a freshwater mollusc', Ecotoxicology and Environmental Safety, 281, 116656, pp. 1 - 12. doi: 10.1016/j.ecoenv.2024.116656.
Abstract: Antidepressant drugs (ADDs) are one of the most extensively used pharmaceuticals globally. They act at particularly low therapeutic concentrations to modulate monoamine neurotransmission, which is one of the most evolutionary conserved pathways in both humans and animal species including invertebrates. As ADDs are widely detected in the aquatic environment at low concentrations (ng/L to low µg/L), their potential to exert drug-target mediated effects in aquatic species has raised serious concerns. Amitriptyline (AMI) is the most widely used tricyclic ADD, while monoamines, the target of ADDs, are major bioregulators of multiple key physiological processes including feeding, reproduction and behaviour in molluscs. However, the effects of AMI on feeding, reproduction and mating behaviour are unknown in molluscs despite their ecological importance, diversity and reported sensitivity to ADDs. To address this knowledge gap, we investigated the effects of environmentally relevant concentrations of AMI (0, 10, 100, 500 and 1000 ng/L) on feeding, reproduction and key locomotor behaviours, including mating, in the freshwater gastropod, Biomphalaria glabrata over a period of 28 days. To further provide insight into the sensitivity of molluscs to ADDs, AMI concentrations (exposure water and hemolymph) were determined using a novel extraction method. The Fish Plasma Model (FPM), a critical tool for prioritization assessment of pharmaceuticals with potential to cause drug target-mediated effects in fish, was then evaluated for its applicability to molluscs for the first time. Disruption of food intake (1000 ng/L) and reproductive output (500 and 1000 ng/L) were observed at particularly low hemolymph levels of AMI, whereas locomotor behaviours were unaffected. Importantly, the predicted hemolymph levels of AMI using the FPM agreed closely with the measured levels. The findings suggest that hemolymph levels of AMI may be a useful indicator of feeding and reproductive disruptions in wild population of freshwater gastropods, and confirm the applicability of the FPM to molluscs for comparative pharmaceutical hazard identification.
Description: Data availability: Data will be made available on request.
Supplementary material is available online at: https://www.sciencedirect.com/science/article/pii/S0147651324007322#:~:text=Appendix%20A.-,Supplementary%20material,-Data%20availability .
URI: https://bura.brunel.ac.uk/handle/2438/29346
DOI: https://doi.org/10.1016/j.ecoenv.2024.116656
ISSN: 0147-6513
Other Identifiers: ORCiD: Alice Baynes https://orcid.org/0000-0002-6337-5956
ORCiD: Rakesh Kanda https://orcid.org/0000-0002-5427-3982
ORCiD: Edwin J Routledge https://orcid.org/0000-0001-7695-364X
116656
Appears in Collections:Dept of Life Sciences Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).2.95 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons