Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/29416
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLechermann, LM-
dc.contributor.authorLau, D-
dc.contributor.authorAttili, B-
dc.contributor.authorAloj, L-
dc.contributor.authorGallagher, FA-
dc.date.accessioned2024-07-26T06:26:17Z-
dc.date.available2024-07-26T06:26:17Z-
dc.date.issued2021-08-11-
dc.identifierORCiD: Laura M. Lechermann https://orcid.org/0000-0002-2742-6269-
dc.identifierORCiD: Doreen Lau https://orcid.org/0000-0002-7623-2401-
dc.identifierORCiD: Luigi Aloj https://orcid.org/0000-0002-7452-4961-
dc.identifierORCiD: Ferdia A. Gallagher https://orcid.org/0000-0003-4784-5230-
dc.identifier4042-
dc.identifier.citationLechermann, L.M. et al. (2021) 'In vivo cell tracking using pet: Opportunities and challenges for clinical translation in oncology', Cancers, 13 (16), 4042, pp. 1 - 19. doi: 10.3390/cancers13164042.en_US
dc.identifier.urihttps://bura.brunel.ac.uk/handle/2438/29416-
dc.descriptionData Availability Statement: Not applicable.en_US
dc.description.abstractCell therapy is a rapidly evolving field involving a wide spectrum of therapeutic cells for personalised medicine in cancer. In vivo imaging and tracking of cells can provide useful information for improving the accuracy, efficacy, and safety of cell therapies. This review focuses on radiopharmaceuticals for the non-invasive detection and tracking of therapeutic cells using positron emission tomography (PET). A range of approaches for imaging therapeutic cells is discussed: Direct ex vivo labelling of cells, in vivo indirect labelling of cells by utilising gene reporters, and detection of specific antigens expressed on the target cells using antibody-based radiopharmaceuticals (immuno-PET). This review examines the evaluation of PET imaging methods for therapeutic cell tracking in preclinical cancer models, their role in the translation into patients, first-in-human studies, as well as the translational challenges involved and how they can be overcome.en_US
dc.description.sponsorshipL.M.L. and F.A.G. have research grants from CRUK (C19212/A16628, C19212/A911376) and GlaxoSmithKline (RQAG/092).en_US
dc.format.extent1 - 19-
dc.format.mediumElectronic-
dc.languageEnglish-
dc.language.isoen_USen_US
dc.publisherMDPIen_US
dc.rightsCopyright © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectcell therapyen_US
dc.subjectimmunotherapyen_US
dc.subjectcell trackingen_US
dc.subjectPET/CTen_US
dc.subjectPET/MRIen_US
dc.subjectdirect cell labellingen_US
dc.subjectreporter genesen_US
dc.subjectimmuno-PETen_US
dc.titleIn vivo cell tracking using pet: Opportunities and challenges for clinical translation in oncologyen_US
dc.typeArticleen_US
dc.date.dateAccepted2021-08-05-
dc.identifier.doihttps://doi.org/10.3390/cancers13164042-
dc.relation.isPartOfCancers-
pubs.issue16-
pubs.publication-statusPublished-
pubs.volume13-
dc.identifier.eissn2072-6694-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/legalcode.en-
dc.rights.holderThe authors-
Appears in Collections:Dept of Life Sciences Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdfCopyright © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).2.63 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons