Please use this identifier to cite or link to this item: http://bura.brunel.ac.uk/handle/2438/8904
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRakobowchuk, M-
dc.contributor.authorHarris, E-
dc.contributor.authorTaylor, A-
dc.contributor.authorBaliga, V-
dc.contributor.authorCubbon, RM-
dc.contributor.authorRossiter, HB-
dc.contributor.authorBirch, KM-
dc.date.accessioned2014-08-18T15:14:26Z-
dc.date.available2014-08-18T15:14:26Z-
dc.date.issued2012-
dc.identifier.citationExperimental Psychology, 97(3), 375 - 385, 2012en_US
dc.identifier.issn0958-0670-
dc.identifier.urihttp://ep.physoc.org/content/97/3/375en
dc.identifier.urihttp://bura.brunel.ac.uk/handle/2438/8904-
dc.descriptionCopyright © 2012 The Authors.en_US
dc.description.abstractModerate-intensity endurance exercise training improves vascular endothelial vasomotor function; however, the impact of high-intensity exercise training has been equivocal. Thus, the effect of the physiological stress of the exercise remains poorly understood. Furthermore, enhanced vascular repair mediated by circulating progenitor cells may also be improved. To address whether the physiological stress of exercise training is an important factor contributing to these adaptations, 20 healthy participants trained for 6 weeks. Training involved either moderate (MSIT; n = 9) or heavy metabolic stress (HSIT; n = 11) interval exercise training programmes matched for total work and duration of exercise. Before and after training, flow-mediated dilatation, low-flow-mediated constriction and total vessel reactivity were measured at the brachial artery using Doppler ultrasound. Circulating progenitor cells (CD34+, CD133+ and CD309/KDR+) were measured by flow cytometry (means ± SD). Relative (MSIT pre- 5.5 ± 3.4 versus post-training 6.6 ± 2.5%; HSIT pre- 6.6 ± 4.1 versus post-training 7.0 ± 3.4%, P = 0.33) and normalized (P = 0.16) flow-mediated dilatation did not increase with either training programme. However, low-flow-mediated constriction was greater after training in both groups (MSIT pre- −0.5 ± 3.2 versus post-training −1.9 ± 3.1%; HSIT pre- −1.0 ± 1.7 versus post-training −2.9 ± 3.0%, P = 0.04) and contributed to greater total vessel reactivity (MSIT pre- 7.4 ± 3.3 versus post-training 10.1 ± 3.7%; HSIT pre- 10.9 ± 5.9 versus post-training 12.7 ± 6.2%, P = 0.01). Peak reactive hyperaemia and the area under the shear rate curve were not different between groups, either before or after training. Although circulating progenitor cell numbers increased following heavy-intensity interval exercise training, variability was great amongst participants [MSIT pre- 16 ± 18 versus post-training 14 ± 12 cells (ml whole blood)−1; HSIT pre- 8 ± 6 versus post-training 19 ± 23 cells (ml whole blood)−1, P = 0.50]. Overall, vasoconstrictor function may be augmented by moderate- and heavy-intensity interval exercise training in young adults. However, circulating progenitor cell numbers were not increased, suggesting that these cells are not likely to be upregulated as a result of training.en_US
dc.description.sponsorshipThe British Heart Foundation and the Nuffield Foundation.en_US
dc.languageEnglish-
dc.language.isoenen_US
dc.publisherWiley-Blackwellen_US
dc.subjectExerciseen_US
dc.subjectInterval exercise trainingen_US
dc.subjectProgenitor cellsen_US
dc.subjectEndurance trainingen_US
dc.titleHeavy and moderate interval exercise training alters low-flow-mediated constriction but does not increase circulating progenitor cells in healthy humansen_US
dc.typeArticleen_US
dc.identifier.doihttp://dx.doi.org/10.1113/expphysiol.2011.062836-
pubs.organisational-data/Brunel-
pubs.organisational-data/Brunel/Brunel Staff by College/Department/Division-
pubs.organisational-data/Brunel/Brunel Staff by College/Department/Division/College of Health and Life Sciences-
pubs.organisational-data/Brunel/Brunel Staff by College/Department/Division/College of Health and Life Sciences/Dept of Life Sciences-
pubs.organisational-data/Brunel/Brunel Staff by College/Department/Division/College of Health and Life Sciences/Dept of Life Sciences/Sport-
pubs.organisational-data/Brunel/University Research Centres and Groups-
pubs.organisational-data/Brunel/University Research Centres and Groups/School of Health Sciences and Social Care - URCs and Groups-
pubs.organisational-data/Brunel/University Research Centres and Groups/School of Health Sciences and Social Care - URCs and Groups/Brunel Institute for Ageing Studies-
pubs.organisational-data/Brunel/University Research Centres and Groups/School of Health Sciences and Social Care - URCs and Groups/Centre for Systems and Synthetic Biology-
Appears in Collections:Sport
Dept of Life Sciences Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.pdf332.9 kBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.